A neural networks approach for forecasting the supplier's bid prices in supplier selection negotiation process

نویسندگان

  • Chun Ching Lee
  • C. Ou-Yang
چکیده

Supplier selection negotiation is a sophisticated and challenged job due to the diversity of intellectual backgrounds of the negotiating parties, the many variables involved in supply–demand relationship, the complex interactions and the inadequate negotiation knowledge of project participants. To do the job well, it is necessary to develop an intelligent system for negotiation support in supplier selection process. Therefore, an artificial neural network-based predictive model with application for forecasting the supplier’s bid prices in supplier selection negotiation process (SSNP) is developed in this paper. By means of the model, demander can foresee the relationship between its alternative bids and corresponding supplier’s next bid prices in advance. The purpose of this paper is applying the model’s forecast ability to provide negotiation supports or recommendations for demander in deciding the better current bid price to decrease meaningless negotiation times, reduce procurement cost, improve negotiation efficiency or shorten supplier selection lead-time in SSNP. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Identifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis

Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...

متن کامل

Suppliers Selection in Consideration of Risks by a Neural Network

Faced with the dynamic demands of a changing market, companies are facing fierce competition, which forces them to consider more and more new approaches to improve quality, reduce costs, produce on time, control their risks and remain successful in the face of any disruption. It is clear that the choice of appropriate suppliers is one of the key factors in increasing the competitiveness of comp...

متن کامل

Forecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics

Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity c...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009